

EVALUATION OF AVAILABLE OPEN SOURCE
TRAFFIC CONTROL SYSTEMS

06-FH1 Phase II Task 1

Advanced Technologies, Incorporated
5703 Red Bug Lake Road, Suite 320

Winter Springs, Florida 32708

Contact Number DTRT57-09-C-10005

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

Table of Contents

Table of Contents...2

Introduction...4

Evaluation of Existing Traffic Signal Control Programs..5

Criteria...5

SCoP Requirements...6

Program 1 - California Partners for Advanced Transit and Highways (PATH)...........9

Base Evaluation Criteria..9

Additional Criteria from SCoP requirements...10

Program 2 - Advanced Technologies, Incorporated Dual Redundant Base Software.11

Base Evaluation Criteria..11

Additional Criteria from SCoP requirements...12

Program 3 - The LA Traffic Control Signal Program..13

Program 4 - The InSync Adaptive Traffic Signal Controller..13

Program 5 – MIT Intelligent Transportation System Program (MITSIMLab)...........13

Program 6 – Software Controller Interface Device (CID) II:...14

Summary of Research Findings (Pros and Cons)..16

Recommendation..18

Advantages of Approach ..18

Appendix A - CICAS-V Interfacing..19

Appendix B - Texas Model Interfacing..20

Appendix C - The ATI Dual Redundant TSCP Metrics and Dependencies..............21

Ada95 Primary Software...21

C++ Redundant Software...21

McCabe Metrics...22

Dependency Graph (ATI PHASE I)..22

Appendix D - PATH Software Metrics and Dependencies..24

C++ (C) Software Metrics...24

Dependency Graph (PATH)...25

Appendix E - MITSIMLab TMS Software Metrics and Dependencies......................26

C++ (C) Software Metrics...26

2

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

Procedural Metrics Summary..26

Appendix F - Phase II Task 1 SOW Description...28

References ...31

3

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

Introduction

According to the Federal Highway Administration there are several standards for traffic signal
controllers. One of these systems is the TS 2 standards for traffic controllers, maintained by
National Electrical Manufacturing Association (NEMA). This TS 2 lacks requirements that
enable interchangeability of sub-components or software between controllers form different
manufacturers (FHWA Traffic control system handbook 2005). The TS2 standards assume that
the whole controller will be replaced when the system changes. Controllers that follow the TS 2
standards are called NEMA controllers and the manufacturer provide the software along with the
controller.

There is also the Advanced Controller Transportation family of standards maintained by a
consortium of NEMA, ITE and AASHTO. According to the Traffic control system handbook
there are two standards (FHWA Traffic control system handbook 2005):

a. The Advanced Transportation Controller 2070 (ATC 2070)
b. The ITS Cabinet for ATCs

Anyone can develop software for an ATC controller, for any purpose (e.g., traffic signal control,
field master unit, ramp metering, count stations, dynamic message sign control, reversible lane
control, etc.) knowing that it will operate on controllers from any manufacturer. Most ATC
controller software for traffic signals adhere to the functionality specified in NEMA TS 2, and is
functionally similar to a NEMA controller (FHWA Traffic control system handbook 2005).

Advanced Technologies, Incorporated is developing an open source base local intersection
Signal Control Program Environment (SCoP) for the Advanced Traffic Controller. As part of
this effort, we are evaluating currently available traffic signal control programs to see if they are
applicable to our effort. The evaluation is based on both system and software criteria. The
overall task as defined in our Phase II SBIR proposal can be found in the Appendixes.

4

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

Evaluation of Existing Traffic Signal Control Programs

Criteria

The overall goal of this research and development is to build an open source base local
intersection Signal Control Program Environment (SCoP). This environment is to be developed
so that it runs on an Advanced Traffic Controller. It must be able to incorporate NCHRP 3-66
concepts, interface to the Cooperative Intersection Collision Avoidance System (CICAS) and
also support the use of Adaptive Control Software Lite (ACS Lite).

In addition to those requirements, the SCoP must perform in a safety critical manner. There
must be mechanisms built into the software to prevent the possibility of collisions due to
erroneous preemption routines and/or traffic light state algorithms (i.e., ring barrier breakdown).
The software will be open source so it must be well documented and easy to understand. The
SCoP should be written using industry known coding standards. If the program is written in a
higher level language such as C++ or Ada95, there should be extensive use of exception handling
in order to prevent software bugs from halting the system.

Programs under consideration to serve as the core of our SCoP must meet complexity metrics
analysis. McCabe metric analysis was chosen over Halstead methods because of the availability
of free analysis tools. A structured software procedure, method, or function should have a
McCabe Cyclomatic complexity of less than or equal to 12 (McCabe suggests 10, other projects
have been very successful using a limit of 15). The McCabe complexity calculations are
explained later on. Cyclomatic complexity is a measure of quantity. Another type of metric
analysis is Essential Complexity. Essential Complexity measures the “quality” of a software
system. It is calculated by removing all primitives from a procedure's control flow and then
computing the Cyclomatic complexity on what remains. There is no magic number for Essential
Complexity.

If a free analysis tool is available we will use it to determine the nesting levels of the software
under analysis. ATI has unique experience with software that contains deep nesting levels. One
of the programs we have developed is a predictive system that contains a routine with a variable
nesting level. This predictive system takes over 3 hours to run its computations when the nesting
level is set at 8. When the nesting level is reduced to 3, the program runs in a few seconds. We
are not overly worried but will insure there are no nested loops deeper than 3 levels in evaluated
programs.

Summary of Criteria

Summarizing the above, each open source program will be analyzed for the following:

1. Can it be ported to an Advanced Traffic Controller Architecture?

2. Can NCHRP 3-66 concepts be incorporated?

3. Can it be interfaced to CICAS?

5

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

4. Can it be interfaced to ACS Lite?

5. Does it have a default steady state?

6. Is the software well documented?

7. Does it make use of exception handling?

8. Is its McCabe Cyclomatic complexity of less than or equal to 12?

9. What is its Essential Complexity and how does that compare to others under analysis?

10. Is the nesting level of loops reasonable?

11. Is the error diagnostic system comprehensive and straight forward?

SCoP Requirements

When evaluating existing systems, we must also take into consideration the capability of the
software under analysis to meet all the requirements specified in our Phase II proposal (aka our
Phase II Statement of Work). We have determined the following System Requirements from
our proposal. These requirements are what we will perform Formal Qualification Tests against.
They will be inputted into an open source requirements tool during the beginning of our next
task. This will allow us to track software development producing standard requirement
traceability matrices. No changes, additions, or deletions to these requirements will be made
without approval and agreement between of Advanced Technologies, Inc. and its VOLPE
Contracting Officer Technical Representative.

SCoP System Requirements
Applicable

to SCoP
Evaluation

Tested By1

Inspection
Lab Test
Field Test (FQT)
Other

No. Id Description Source

1 1 Develop a base Local Intersection
Control Program Environment Proposal pg. 5 Yes Laboratory

2 1.1 All ATI developed critical core
software is Dual Redundant

Proposal pg. 5
Proposal pg. 23

No Inspection

3 1.1.1 Primary ATI Software is Ada95 Proposal pg. 23 No Inspection

4 1.1.2 Secondary ATI Software is C or C++ Proposal pg. 23 No Inspection

5 1.1.3
ATI Primary Software provides
current time to Secondary Software
10 times per second

Proposal pg. 23 No Laboratory

6 1.1.4
ATI Primary Software provides
heartbeat to ATI Secondary Software
once per second

Proposal pg. 23 No Laboratory

6

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

SCoP System Requirements
Applicable

to SCoP
Evaluation

Tested By1

Inspection
Lab Test
Field Test (FQT)
Other

No. Id Description Source

7 1.1.5
The system must fall into steady state
after 5 consecutive miscompares of
data2

Proposal pg. 23 No Laboratory

8 1.1.6 Watchdog timers will be used to
monitor ATI software

Proposal pg. 23 No Laboratory

9 1.1.7 Protected Types will be used in ATI
primary software Proposal pg. 24 No Inspection

10 1.2 Software is Open Source Proposal pg. 5 Yes Inspection

11 1.3 Software Supported By ATI Proposal pg. 5 No Other – Phase III

12 1.4 Use NTCIP standards and protocols3 Proposal pg. 6 Yes Inspection

13 1.5 Abstract all interfaces into separate
classes Proposal pg. 6 Yes Inspection

14 1.6 Use ATC API Standard, V 2.06b, to
interface with Linux ATC OS

Proposal pg. 6 No Inspection

15 1.7 Use UML for Software Requirements
and Design. Proposal pg. 10 No Inspection

16 1.7.1 UML Class Diagrams and
Associations

Proposal pg. 10,
Proposal pg. 11

No Inspection

17 1.7.2
Interfaces to
Simulator/Hardware/Other Software
shown on UML diagrams.

Proposal pg. 10,
Proposal pg. 11 No Inspection

18 1.7.3 Auto­Generate Interfaces from UML
diagrams.

Proposal pg. 10,
Proposal pg. 11 No Inspection

19 1.7.4 Industry Standard Nomenclature will
be used.

Proposal pg. 12 No Inspection

20 1.8
All requirements/design/code kept
under configuration
control/management.

Proposal pg. 10 No Inspection

21 1.8.1 Header Updated automatically when
code checked back into CM. Proposal pg. 12 No Inspection

22 1.8.2
Automated Scripts build SCoP
directly from Configuration
Management System

Proposal pg. 12 No Inspection

23 1.9 All software place in Sourceforge
open source repository

Proposal pg. 10 No Inspection

24 1.10 Safety Critical Software (Intersection
Control) tested at the Unit Level Proposal pg. 11 No Laboratory

7

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

SCoP System Requirements
Applicable

to SCoP
Evaluation

Tested By1

Inspection
Lab Test
Field Test (FQT)
Other

No. Id Description Source

25 1.11 SCoP is ported to Development
Hardware Proposal pg. 13 No Laboratory

26 1.11.1 Development Hardware must run
Linux

Proposal pg. 14 No Inspection

27 1.11.2 SCoP to be integrated with the Texas
Model Proposal pg. 16 Yes Laboratory

28 1.11.2.1 Simulate a 4 leg intersection, 3
inbound, 3 outbound lanes per leg.

Proposal pg. 16 No Laboratory

29 1.11.2.2 Simulate 3 detectors per lane Proposal pg. 16 No Laboratory

30 1.11.3 SCoP to be integrated with CORSIM Proposal pg. 17 Yes Laboratory

31 1.12 Ensure SCoP can be integrated with
CICAS. Proposal pg. 18 Yes Inspection and/or

Laboratory

32 1.13 Ensure SCoP IS integrated with ACS­
Lite.

Proposal pg. 19 Yes Laboratory

33 1.14 Integration of SCoP with Advanced
Traffic Controller Hardware Proposal pg. 19 No Laboratory

34 2.0 Implementation of Selected NCHRP
3­66 algorithms

Proposal pg. 22 No Laboratory

35 2.1 Integration of NCHRP 3­66
algorithms Proposal pg. 23 No Laboratory

36 3.0 SCoP Live Intersection Testing Proposal pg. 24 No FQT

Figure 1: SCoP Requirements

Notes:

1. Inspection testing is done by visual analysis and conformation to assure a requirement is
met. Laboratory testing is done using simulators and other test drivers on both unit level
software and integrated software running on hardware. Field Testing (Formal Qualification
Testing) is done at a controlled intersection.

2. Steady state will be a user configurable parameter. It can be flashing red lights or a timed
sequence.

3. The current LA-TSCP software is unable to support NTCIP protocols.

8

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

Program 1 - California Partners for Advanced Transit and Highways (PATH)

Dr. Marco Zennaro developed the Berkeley Adaptive Traffic Control System Protocol (Berkeley
ATCP2070) at the University of California Berkeley. It was developed specifically for the
Econolite Model 2070 Advanced Traffic Controller. It was released under GPLv2 in May of
2008 and its current (and only) version is 1.0. According to Dr. Zennaro, it is meant to provide
interoperability and scalability.

Unfortunately, only the “core” program (batcp.cpp) was available. The core program includes
several C++ header files (such as modes.h, types.h, signal.h, and process.h) which are needed for
compilation. In addition, the batcp.cpp is coupled to the operating system (OS9) through the
include of OS9def.h.

Base Evaluation Criteria

• Can it be ported to an Advanced Traffic Controller Architecture?

YES. It already runs on an Advanced Traffic Controller. It is not running under Linux
but can be ported.

• Can NCHRP 3-66 concepts be incorporated?

YES, but not easily done. The application software is a single file, batcp.cpp.

• Can it be interfaced to CICAS?

YES. but not easily done. See above (single file problem).

• Can it be interfaced to ACS Lite?

YES. but not easily done. Same as above (single file problem).

• Does it have a default steady state?

YES.

• Is the software well documented?

YES. Yes, the comment to code ratio is 21%.

• Does it make use of exception handling?

NO. There are zero exception handlers. Errors are not caught.

• Is its McCabe Cyclomatic complexity of less than or equal to 12?

NO. The McCabe Cyclomatic complexity for the PATH software averaged 19.94.

• Is its McCabe Essential Cyclomatic complexity of less than or equal to 12?

NOT PERFORMED. The free tool used to perform metric analysis on the PATH
program did not contain an essential cyclomatic function.

9

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

• Is the nesting level of loops reasonable?

YES . Hand inspection of the software showed no nested looping.

• Is the error diagnostic system comprehensive and straight forward?

NO. There is no diagnostic error system.

Additional Criteria from SCoP requirements

• Is the software Open Source?

YES. It is released under GPLv2

• Does it already contain or use NTCIP standards and protocols?

NO. But they can be added (again, not easily)

• Can it be integrated or is it integrated with the Texas Model?

YES. Before it is integrated into the Texas Model, each procedure in the program would
have to be broken out into separate modules. The program does not make use of any
object oriented attributes (inheritance, dynamic polymorphism, encapsulation, etc). The
program would need to be re-designed and an interface to the Texas Model added.

• Can it be integrated with CORSIM?

YES. Last response applies here also.

10

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

Program 2 - Advanced Technologies, Incorporated Dual Redundant Base
Software

Advanced Technologies, Incorporated developed a dual redundant base traffic intersection
controller prototype as part of the Phase I effort for 06-FH1. This prototype could control an
intersection and contained the railroad preemption concept of NCHRP 3-66. The prototype used
a configuration file to “define” the intersection. The number of intersection approaches, traffic
signals, lanes, crosswalks, etc are all modifiable without software constraints.

Base Evaluation Criteria

• Can it be ported to an Advanced Traffic Controller Architecture?

YES. The software developed by ATI can be ported to any software or hardware
environment. It already runs under Linux and Windows.

• Can NCHRP 3-66 concepts be incorporated?

YES. The software developed by ATI has already incorporated the train preemption
concept of NCHRP 3-66. The software is modular and object oriented. The employees
of ATI who are working on this Phase II effort know the software well because they
wrote it.

• Can it be interfaced to CICAS?

YES. Currently, there is not a formal specification for the interface between CICAS-V
and the traffic controller. ATI's primary Ada95 software is object oriented. Adding an
interface module is doable.

• Can it be interfaced to ACS Lite?

YES. Current implementations of ACS Lite use the NTCIP standard. ATI's Statement of
Work states we will be NTCIP compliant.

• Does it have a default steady state?

YES. The current Phase I prototype includes steady state processing of an intersection.
However it does not include transitioning to a default state upon detection of errors.
Many different error detection techniques are included in the software. A detected error
was displayed as a warning (miscompare and/or log message) but the prototype did not
drop into the steady state.

• Is the software well documented?

YES. The primary software has a comment to code ratio of 22%. The comment to code
ration of the secondary software is 23%. The code is easily understood. Both the
secondary software and primary software were written using formal coding standards.

• Does it make use of exception handling?

11

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

YES. There are 395 exception handlers in the primary software alone.

• Is its McCabe Cyclomatic complexity of less than or equal to 12?

YES. The McCabe Cyclomatic complexity measurements for ATI's auto-generated and
redundant software are well under 12 (1.5 and 1.21 respectively).

• Is its McCabe Essential Cyclomatic complexity of less than or equal to 12?

YES. The McCabe Essential Complexity measurements for ATI's auto-generated and
redundant software are well under 12 (1.5 and 2.27 respectively).

• Is the nesting level of loops reasonable?

YES. The analysis provided by our software case tools showed looping levels of less
than 1 for both the auto-generated code and the ATI written code. This implies there is
no delay induced because of nested loops.

• Is the error diagnostic system comprehensive and straight forward?

YES. Errors are handled by a central error handling system.

Additional Criteria from SCoP requirements

• Is the software Open Source?

YES. All software developed by ATI under this contract is by definition open source.

• Does it already contain or use NTCIP standards and protocols?

NO. NTCIP standards and protocols were not used in Phase I because we did not have to
interface to outside systems.

• Can it be integrated or is it integrated with the Texas Model?

YES. ATI's primary Ada95 software is object oriented. Adding an interface module is
simple.

• Can it be integrated with CORSIM?

YES. We will dynamically link interface libraries with CORSIM on a Windows based
PC to allow CORSIM to drive our software (containing the TSCP) executing on the
development board. This is the way the University of Idaho uses CORSIM.

12

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

Program 3 - The LA Traffic Control Signal Program

During the Phase II Proposal process, Ed Fok of the Federal Highway Authority tried to obtain a
copy of the LA Traffic Control Signal Program (LA TSCP). At the time of the proposal writing
the software was still not open source. ATI recently recontacted Ed Fok to determine the current
status of the software. Mr. Fok said there is no plan to pursue making the LA TSCP program
open source.

Program 4 - The InSync Adaptive Traffic Signal Controller

InSync is an adaptive traffic signal system developed by Rhythm Engineering©. The system is
claimed to automatically optimize local traffic signals and coordinates signals along roadway
arterials based on real-time traffic demand. The system utilizes cameras coupled with image
processing of vehicles queues to adjust traffic signal timings in an adaptive fashion. The software
is written is written in C++ language and it is a proprietary software (not open source system).
The software is capable of communicating with NEMA and 2070 controllers alike (InSync
Traffic-Adaptive System White Paper).

When a sensor of this system is placed in emergency/fog mode, InSync will access 4-weeks of
historic green split data for specific TOD/DOW at that particular approach. This data is then
normalized into a split time to place in the controller until the sensor is functioning again properly. If
communications between networked intersections fail, individual processors will continue to perform
local optimization functions.

Because this is not open source, we are not considering it for SCoP. However, we did look at it
for its functionality.

Program 5 – MIT Intelligent Transportation System Program (MITSIMLab)

MIT’s Intelligent Transportation Systems (ITS) program developed the MITSIM Lab to evaluate
the impact of the alternative of the traffic management system design. According to the MIT
Intelligent transportation systems web site, http://mit.edu/its/mitsimlab.html, the software
incorporates a traffic management simulator (TMS) that can be used to evaluate:

1. Ramp control (ramp metering)

2. Freeway mainline control
a. Lane control signals (LCS)
b. Variable speed limit signs (VSLS)
c. Portal signals at tunnel entrances (PS)

3. Intersection control

4. Variable Message signs (VMS)

5. In-vehicle route guidance

13

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

The software has an open source version that requires the Linux operation system. It calls for the
“Redhat Linux 7.3 distribution” to compile the source code.

The files can be downloaded from the MIT’s Intelligent Transportation System Program website
at: http://mit.edu/its/MITSIMLabOSnew.html.

MITSIM was examined to see how other open source traffic programs are implemented. Just
like the SCoP we are building, it has an online user's group -

http://tech.groups.yahoo.com/group/MITSIMLab/

The software is under configuration control and uses the same underlying tool used by ATI (the
Concurrent Versioning System, or CVS) . Some files contain excellent headers with attributes ->
Class Name, File Name, Class Type, Derivation, Layered, Friends, C++ Version, Calls to, and
Library. Some do not. The software has detailed installation instructions and a 116 page users
manual explaining how to use it. Like ATI's Phase I prototype, there is a way to simulate an
eight-phase dual-ring traffic signal controller .

ATI considered using the Traffic Management System (TMS) part of this software for the core
logic of our system. However, the software is extremely complex. The average McCabe
complexity figure for the TMS C++ classes is 23.92. That might be overlooked if the code was
adequately commented. But, the comment to code ratio is only 10 percent. This is way less than
both the PATH software and the ATI Phase I prototype software under consideration.

Program 6 – Software Controller Interface Device (CID) II:

The National Institute for Advanced Transportation Technology, University of Idaho, developed
a real-time interface between a 170, 2070 and NEMA TS 1 and TS 2 traffic controllers and
application software running on Windows 98, Windows ME or Windows 2000 (Brian Johnson et
al, 2001). Listed below are applications of the software:

(1) A real-time interface between the TSIS/CORSIM traffic simulation running on a
computer and 170, 2070 and NEMA TS1 and TS2 traffic controllers (hardware-in-
the-loop simulation). The simulation runs with the real traffic controller instead of a
generic model in the simulation, resulting in more realistic simulations that can be
used to test traffic signal plans or train new engineers.

(2) A suitcase tester, in which a laptop computer and a CID are used to test the settings of
a traffic controller and simulate full operation of the controller. This allows signal
timing and progression to be checked under multiple scenarios prior to field
installation.

(3) A hardware tester that can be used to test the operation of the CID periodically and
test the continuity in the cables connecting the CID to the traffic controller.

14

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

In addition, the AASHTO Green book and the MUTCD were reviewed, both books only include
suggestions for the logic to be used in the signal operation and the signal timing, but there was no
mention of the software operating traffic signal controllers.

We may obtain this software during the port of our software to the Advanced Traffic
Controller to aid in the testing of our software.

15

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

Summary of Research Findings (Pros and Cons)

 LA TSCP - Not open source, will not be used as base software for SCoP.

 INSYNC ADAPTIVE TRAFFIC SIGNAL CONTROLLER - Not open
source, will not be used as base software for SCoP.

 MITSIMLab – Open source, however, not considered for core base logic because of
the complexity of the software and lack of extensive comments that might overcome the
complexity.

 PATH SOFTWARE:

PROS:

➢ The main benefit to the software developed by Dr. Marco Zennaro is it has been
run on an Advanced Traffic Controller (Econolite Model 2070).

➢ The software is well commented.

➢ The software creates an ATCP sensor server, an ATCP actuator server and a
“lookup” server.

CONS:

➢ The software uses hard-coded strings to specify paths.

➢ There is no error handling.

➢ It is not POSIX compliant.

➢ It does not run under Linux but instead is tied to OS9.

➢ All initialization logic is hard-coded.

➢ Magic numbers are used.

➢ Threading not used. Not interruptable (preemptable)

➢ Most of the logic is contained in a single file that has an C++ extension but does
not use C++ the way it is meant to be used.

➢ No easy method to scale software.

16

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

 INTERSECTION SOFTWARE DEVELOPED BY ATI:

PROS:

➢ Safety Critical (Dual Redundant, Software Watchdog Timers, Protected Types,
Exception Handling).

➢ The software is well commented.

➢ Auto-Generated from UML Design.

➢ Object Oriented techniques used (inheritance, encapsulation,and association)

➢ Tasking model allows easy incorporation of preemption.

➢ The software is not complex based upon metric analysis.

➢ The software is modular and can be easily interfaced to other systems.

➢ The software uses an initialization file to define an intersection. This makes
scalability simple.

➢ The software is portable. The primary software already runs under Linux and
Windows. It should also run under any POSIX compliant operating system.

CONS:

➢ The software uses terminology unfamiliar to subject matter experts.

➢ The dual-redundant approach, while it promotes safety, requires additional
independent programmers for the redundant software.

➢ Headers are currently missing from the redundant implementation.

17

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

Recommendation

ATI spent a few weeks researching and analyzing existing open source base intersection control
programs. Our Phase II proposal included the possibility of using the LA TSCP program, the
California PATH by Marco Zennaro or the software developed by ATI during our Phase I effort.
During this task, two of our subject matter experts, Dr. Essam Radwan and Mr. Noor Elmitiny,
researched additional programs that could be applicable to our effort. The most promising of
these was the TMS component of the MIT MITSIM program.

Based upon the ability to meet SCoP requirements and metric analysis, we believe the best
forward approach is to enhance the software developed by ATI during Phase I with the
following caveats derived from the Task 1 research:

1) Use Canny Quach's in-depth knowledge of the LA-TSCP software to ensure our software
contains the same base functionality.

2) Use the interfaces developed by Dr. Marco Zennaro to guide us when porting our finished
software to an Advanced Traffic Controller.

3) Use the MIT developed MITSIM documentation as a guide when developing our SCoP
installation instructions and user's manual. This is some of the best open source
installation instructions we have seen.

Advantages of Approach

1) ATI's principle investigator and other engineers wrote the software and are intimately

familiar with it.

2) Unlike other software examined, the ATI code itself has safety mechanisms built in.

3) The ATI software is the least complex and best documented of all programs evaluated.

4) The ATI primary software is written in Ada95, the same language used in flight control

systems, nuclear power plants, and other safety critical applications.

5) The ATI software is extremely portable and is POSIX compliant.

18

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

Appendix A - CICAS-V Interfacing

As part of the evaluation criteria, we studied current CICAS prototypes and concepts. We
determined how easy it would be for each of the intersection control systems under evaluation to
interface with these prototypes.

We examined the Intersection Collision Avoidance-Violation (ICAV) project completed by the
Virginia Tech Transportation Institute. This system is designed to warn drivers if they are in
danger of running a stop sign or a red light. We will interface to the ICAV signal-violation
system.

If SCoP is to interface with the ICAV testbed, it must be able to interface with the infrastructure
controller contained in the testbed. This controller was custom built to control the ICAV test
intersection. The system uses wireless UDP packets to communicate between the signal
(infrastructure) controller and the algorithm processor. SCoP should be able to provide an
interface the custom built infrastructure controller OR the Algorithm Processor can access.

We looked at the overall architecture defined by the CAMP partners. It is the “Traffic Signal
Interface” that SCoP must integrate with.

Figure 2: ICAV testbed

19

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

Appendix B - Texas Model Interfacing

As part of this task we re-installed the latest Linux version (6.0) of the Texas Model on one of
our development systems. We were able to create a simple intersection. However, we were
more interested in the software itself and how we plan to make use of it during our SCoP
development.

The Texas Model is a combination of Java and FORTRAN based programs. If the model is to be
rebuilt, the main FORTRAN programs must be modified depending upon the platform they will
be executed on. There are scripts (such as compaq_run_removec_on_z_texas_src_to_f_
files_linux.bat) to perform this modification. For our purposes, we decided to stick with Linux
and use the already modified Linux source files.

The Texas Model for Linux has the following components:

➢ gdvsim: Enter or change specifications for intersection geometry or
traffic, traffic control, duration of simulation process, or request
creation of animated graphics file. This must be the first command if
you are beginning a new problem.

➢ gdvpro: Process your specifications for geometry and traffic.

➢ geoplot : Optionally display/plot the intersection geometry and vehicle
paths.

➢ simpro: Executes the actual simulation using specifications from files
created by the gdvsim and gdvpro commands.

➢ dispre: Optionally prepare an animation graphics file for display.

➢ dispro: Optionally view the animated graphics.

➢ reptol: Perform replicate runs until the specified tolerance is
achieved and create simstat.rep statistics file.

ATI will replace the “simpro” portion of the Texas Model with our SCoP. This will allow the
Texas Model to drive our system. Our current simulation GUI will be totally replaced by the
Texas Model.

20

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

Appendix C - The ATI Dual Redundant TSCP Metrics and
Dependencies

Figure 3: Ada 95 Primary Software Metrics

C++ Redundant Software

 Lines Code Comment Blank Strs AvgLen Filename
 85 39 26 20 3 5 ./clock.cpp
 271 99 116 56 1 10 ./clock.h
 54 19 22 13 1 10 ./common.h
 212 184 5 23 28 14 ./entrance_lane.cpp
 117 48 39 30 5 8 ./entrance_lane.h
 368 263 43 62 36 24 ./intersection.cpp
 39 24 0 15 1 14 ./intersection.h
 118 66 33 19 3 10 ./interval.cpp
 42 27 1 14 1 10 ./interval.h
 3 1 0 2 1 13 ./lane_list.cpp
 22 15 0 7 1 17 ./lane_list.h
 42 32 0 10 0 0 ./list_node.h
 87 63 2 22 14 17 ./main.cpp
 171 126 24 21 8 11 ./ring.cpp
 47 29 2 16 1 17 ./ring.h
 92 74 0 18 1 8 ./road.cpp
 46 31 2 13 3 15 ./road.h
 118 97 0 21 9 13 ./road_group.cpp
 46 34 0 12 4 11 ./road_group.h
 123 88 10 25 22 14 ./socket.cpp

21

Ada95 Primary Software

Line metrics summed over 61 units
 all lines : 17018
 code lines : 10921
 comment lines : 2931
 end-of-line comments : 111
 blank lines : 3166
Element metrics summed over 61 units
 all statements : 3573
 all declarations : 2720
 logical SLOC : 6293
 102 public types in 26 units including
 4 tagged types
 20 private types
 2 task types (there are more private task types)
 114 type declarations in 32 units
 254 public subprograms in 30 units
 304 subprogram bodies in 30 units

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

 52 34 6 12 0 0 ./socket.h
 0 0 0 0 0 0 ./train_track.cpp
 31 15 0 16 1 10 ./train_track.h
 2186 1408 331 447 1 10 Total
Percentage Code: 64%
Percentage Comment: 15%
Percentage Blank: 20%
Percentage Cmt/Code: 23%
Average Code/File: 61 lines
Blocks: 99
Lengths (lines): min: 0 max: 169
Strings: 144
Size (bytes): total: 2296 average: 15

Figure 4: ATI Secondary Software Metrics

McCabe Metrics

These are the metrics produced by the GNAT Programming System toolset for ATI's Phase I
primary Ada95 core intersection control software. The software makes use of inheritance and
auto generation of code. Simulation/GUI code was not included in the analysis (it will be
replaced in Phase II by the Texas Model and CORSIM).

McCabe and Other Metric Averages

Code Type Statement
Complexity

Short­
Circuit
Complexity

Cyclomatic
Complexity

Essential
Complexity

Max
Loop
Nesting

Extra
Exit
Points

Inherited or Auto­Generated 1.5 0 1.5 1.5 0.33 0.17

ATI Phase I Core Software
Methods (functions/procedures)

2.23 0.04 2.27 1.21 0.21 0.06

Figure 5: ATI McCabe Metric Summary

Dependency Graph (ATI PHASE I)

ATI's dependency graph would take several pages. The software IS NOT tightly coupled,
however, it is object oriented and highly modularized and therefore contains many packages.
The following is just a brief part of our overall graph.

22

Evaluation of Available Open Source Traffic Control Systems
Advanced Technologies, Incorporated 06-FH1 Phase II - Task 1 7/9/2009

Figure 6: Partial ATI Dependency Graph

23

Appendix D - PATH Software Metrics and Dependencies

C++ (C) Software Metrics

The GPS Toolset does not yet produce metrics for C++. These metrics were produced by the free tool
cccc found on Sourceforge. The tool automatically highlights moderate problems in yellow and
severe deficiencies in red.

 LOC = Lines of Code
 MVG = McCabe's Cyclomatic Number
 COM = Comment Lines

Function prototype LOC MVG COM

ATCP_receive(statusDataType *)
declaration batcp.cpp:152
definition batcp.cpp:827

66 26 16

FIO_sensors_read(statusDataType *)
declaration batcp.cpp:156
definition batcp.cpp:912

48 9 33

Set_Control(statusDataType *)
definition batcp.cpp:1118 84 13 20

Set_Lights(statusDataType *, char,
 char)
definition batcp.cpp:1060

42 7 17

Set_Up_Socket(statusDataType *, int)
declaration batcp.cpp:150
definition batcp.cpp:283

31 7 18

Update_Control(statusDataType *)
definition batcp.cpp:1272

385 146 18

bin_prnt_byte(int)
declaration batcp.cpp:158
definition batcp.cpp:164

17 2 3

finalize_status_data(statusDataType *)
declaration batcp.cpp:151
definition batcp.cpp:268

11 3 3

fio_init(statusDataType *)
definition batcp.cpp:1222 35 6 8

initialize_status_data(statusDataType *,
 int, char)
declaration batcp.cpp:149
definition batcp.cpp:184

64 4 12

main(int, char **)
definition batcp.cpp:1727 43 5 38

parse_atcp_packet(packet *,
 statusDataType *)
declaration batcp.cpp:155
definition batcp.cpp:335

299 98 57

send_actuator_list_packet(packet *,
 statusDataType *) 35 2 6

file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 335
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 155
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 1727
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 184
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 149
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 1222
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 268
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 151
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 164
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 158
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 1272
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 283
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 150
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 1060
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 1118
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 912
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 156
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 827
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 152

definition batcp.cpp:780

send_sensor_data_packet(packet *,
 statusDataType *)
declaration batcp.cpp:154
definition batcp.cpp:990

53 4 6

send_sensor_list_packet(packet *,
 statusDataType *)
declaration batcp.cpp:153
definition batcp.cpp:693

66 5 11

set_control(statusDataType *)
declaration batcp.cpp:157

1 0 0

sig_handler(int)
declaration batcp.cpp:159
definition batcp.cpp:1823

11 2 2

Totals (TOT), Averages (AVG) 1291 (TOT) 19.94 (AVG) 268 (TOT)

Figure 7: PATH Software Metrics

Dependency Graph (PATH)

The dependency graph below shows the PATH Software to be a single file dependent upon the OS9
operating system. Unlike the ATI modular approach, the core logic is contained in a single program,
batcpp.

Figure 8: PATH Dependency Graph

file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 1823
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 159
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 157
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 693
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 153
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 990
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 154
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/PATHCODE/CCCC/cccc_src.html#batcp.cpp: 780

Appendix E - MITSIMLab TMS Software Metrics and Dependencies

C++ (C) Software Metrics

The GPS Toolset does not yet produce metrics for C++. These metrics were produced by the free tool
cccc found on Sourceforge.

 LOC = Lines of Code
 MVG = McCabe's Cyclomatic Number
 COM = Comment Lines

Procedural Metrics Summary

Module Name LOC MVG COM

TMS_ApidDetector 259 81 23

TMS_ApidParameters 33 3 8

TMS_ApidPrmTable 66 9 0

TMS_CmdArgsParser 6 0 5

TMS_Communicator 376 103 30

TMS_CtrlLogic 86 16 4

TMS_DetectedInc 105 31 8

TMS_Engine 508 79 84

TMS_Exception 18 2 0

TMS_FileManager 118 54 6

TMS_Guidance 109 16 6

TMS_Incident 196 39 32

TMS_IncidentDetector 100 27 2

TMS_IncidentDialog 74 11 19

TMS_Interface 22 3 1

TMS_Lane 2 0 4

TMS_Legend 7 0 7

TMS_Link 127 52 14

TMS_LusAction 215 59 9

TMS_McmasterDetector 233 89 8

TMS_McmasterParameters 50 4 8

TMS_McmasterPrmTable 62 7 0

TMS_Menu 49 0 9

TMS_Modeline 37 1 8

file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Modeline.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Menu.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_McmasterPrmTable.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_McmasterParameters.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_McmasterDetector.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_LusAction.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Link.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Legend.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Lane.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Interface.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_IncidentDialog.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_IncidentDetector.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Incident.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Guidance.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_FileManager.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Exception.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Engine.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_DetectedInc.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_CtrlLogic.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Communicator.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_CmdArgsParser.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_ApidPrmTable.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_ApidParameters.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_ApidDetector.html#procdet

TMS_Network 2 0 5

TMS_OutputDialog 76 9 13

TMS_Parameter 42 14 1

TMS_PsAction 102 17 7

TMS_ResponsePhase 69 12 11

TMS_Segment 181 53 18

TMS_Sensor 203 54 19

TMS_SensorDataDialog 90 4 13

TMS_SetupDialog 131 7 11

TMS_Signal 8 1 0

TMS_Status 81 7 0

TMS_Symbols 5 0 8

TMS_TollBooth 5 0 5

TMS_VslsAction 220 45 16

Totals (TOT), Averages (AVG) 4073 (TOT) 23.92 (AVG) 422 (TOT)

Figure 9: MITSIMLab TMS Software Metrics

file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_VslsAction.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_TollBooth.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Symbols.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Status.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Signal.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_SetupDialog.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_SensorDataDialog.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Sensor.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Segment.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_ResponsePhase.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_PsAction.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Parameter.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_OutputDialog.html#procdet
file:///media/truecrypt1/DOTSBIR/Phase II/TASK 1/MIT Code/MITSIMLab/view/simlab/TMS/CCCC/TMS_Network.html#procdet

Appendix F - Phase II Task 1 SOW Description

From our Phase II Proposal (that is also our Statement of Work):

Objective: Evaluate Available Open Source Traffic Signal Control Programs.

ATI will evaluate existing open source traffic signal control programs for use in our system.
This evaluation will be presented to our FHWA COTR and project advisory team.

Work Plan 1 (WP1): Evaluation of Existing Traffic Signal Control Programs.

ATI will attempt to examine the Los Angeles Traffic Signal Control program (LA TSCP) for
our core intersection logic. The LA TSCP consists of three separate tasks that interact with
each other. The TSCP's low-level control task interacts with input and output device buffers.
The high level control task determines the system behavior. It is this task which our software
will interface to. The task is written in C.

Until we have the source code or an IRS/IDD in our possession it is not possible to
definitively state the interface method. Based on our past experiences, we will use one or
more of the following methods:

 Direct Coupling: Directly linking our C++ and Ada95 software to the TCSP high
level control task. Ada95 interface pragmas will be used for the primary software’s
interface. The secondary software can directly link the task in.

 Wrappers: We will develop wrappers for any interfaces exposed in the TSCP
software.

 TCP/IP: We will use industry standard interface methods to loosely couple the LA
TSCP software with our system. CORBA has been ruled out because it is not an
ITS standard (Canny Quach).

We will examine the LA TSCP program for compliance to the ATC API standard. If possible,
we will try to upgrade the source code to comply with the standard by adding translation
objects at the interface level.

As part of this integration task we will examine the way the CALTRANS TSCP incorporated
the LA TSCP as their baseline. This will help us to better understand interfacing to the LA
TSCP.

The FHWA has been actively trying to have the LA TSCP classified as open source. As of this
date, there has not been a formal open source release of the LA TSCP. This is why we are
considering additional core logic options. During our research we found that on May 9 th, 2003
the Los Angeles City Council adopted the following. We’ve highlighted the relevant parts:

Roll Call #5 - Motion (Bernson - Reyes) Adopted, Ayes (15)

03-0859 - TRANSPORTATION COMMITTEE REPORT relative to the City’s Automated
Traffic Surveillance and Control System (ATSAC) Distribution and Licensing

Agreements. Recommendations for Council action, SUBJECT TO THE APPROVAL
OF THE MAYOR:

1. AUTHORIZE the General Manager, Department of Transportation(DOT), or
designee on behalf of the City, to enter into a software distribution agreement with
the Federal Highway Administration to grant a non-exclusive and non-
transferable right to distribute the Traffic Signal and Control Program (TSCP),
Adaptive Traffic Control System (ATCS), Smart Transit Priority Manager (STPM), and
Transit Priority System (TPS) traffic signal control software, subject to the submission
of a certification of compliance form or waiver request relative to Equal Benefits
Ordinance Certification, acceptance of the Contractor Responsibility Ordinance
described included in the Standard Provisions for City Contracts and approval of the
City Attorney as to form and legality.

2. AUTHORIZE the General Manager, DOT, or designee, on behalf of the City, to enter
into a software licensing agreement with the McTrans Center of the University of
Florida to grant an unlimited, non-exclusive right to list and sell licenses to use
the TSCP, ATCS, STPM and TPS traffic signal control software, subject to the
submission of a certification of compliance form or waiver request relative to Equal
Benefits Ordinance, acceptance of the Contractor Responsibility Ordinance described
in the Standard Provisions for City Contracts and approval of the City Attorney as to
form and legality.

3. AUTHORIZE the DOT to receive funds from the distribution of the traffic signal
control software and deposit said funds into a new ATSAC Trust Fund Software
Licensing Revenue Account, account number to be determined by the Controller.

4. AUTHORIZE the DOT to expend funds from the Software Licensing Revenue
Account for the ongoing development of new applicable areas of traffic signal control
technologies, transportation management strategies, staff training, professional
development and other related investments.

5. DIRECT the DOT to report to the Transportation Committee regarding revenue
received in and funds expended from the Software Licensing Revenue Account within
one year of establishing the Account.

Fiscal Impact Statement: The City Administrative Officer reports that there is no impact
to the General Fund. No funds are required to engage in these contracts. DOT reports
that the subject software will be distributed for amounts between $15,000 and
$30,000 and DOT, on behalf of the City, would collect half the selling price. It is
unknown how much software will be distributed; therefore, it is recommended that the
Department report to the Transportation Committee regarding any proceeds

The LA Traffic Control Signal Program (LA TCSP) was not free nor open source as was
expected during Phase I development. As of now, it costs $1,500 per copy. This is from the
McTrans website:

TRAFFIC SIGNAL CONTROL PROGRAM (TSCP) SINGLE

TSCP7 allows the Model 2070 Controller to function as a two- through eight-phase, six-
overlap, dual-ring traffic signal controller. The TSCP can operate as a stand-alone
actuated or non-actuated controller, or as part of an interconnected system to either an
ATSAC type traffic control system with second-by-second communications, or a hard-
wire or modem field master.

Operating System: NA Level Of Support: NA $1500 Product ID: TSCP.S

A more realistic plan is to examine the California Partners for Advanced Transit and Highways
(PATH) control software to determine if it is suitable for our program. The PATH software
was developed by Marco Zennaro as part of his graduate thesis for the University of California
at Berkeley. According to his website, Zennaro.net, it was to be released in May of 2008. It is
still not posted. We have tried to contact him though e-mail and his cell phone. We will
ensure that Mr. Zennaro's software is included as part of our evaluation.

We will present our findings from the examination of these and any other available open
source traffic signal control programs to the FHWA COTR and our project advisory team.
They will assist in making a decision whether or not to use one of these programs or develop
our own.

IF A PRE-EXISTING PROGRAM IS CHOSEN, ATI will evaluate associated design
documents. ATI prefers to use the Unified Modeling Language (UML) to specify
system/software requirements and design. If existing UML models are not available for the
chosen program, then ATI will use the reverse engineering capabilities of Umbrello (our UML
open source case tool of choice) to build class diagrams and associations from existing code.
We will add the interfaces to the Texas Model, CORSIM, the MPC885 Application
Development kit, and a generic ATC to this model. All interfaces developed by ATI will be
modeled in UML, auto-generated, coded using strict standards, and tested. All requirements,
design, and code for any interfaces will be kept under configuration control.

All of ATI's software will eventually be placed on Sourceforge, the largest open source data
repository.

References

1. Gardinier, Mark, Romanowich, Donna M., “Signal State Transition Software SBIR 06-FH1
Final Report”, Advanced Technologies, Inc., San Diego, California, 2007

2. Johnson, Brian, Wells, Richard, Kyte, Michael, Bullock, Darcy, Li, Zhen, Zhou, Ying,
Richards, James, Fisher, John, Remus, Jeremiah, Miller, Cody, Bordenkircher, Eugene,
Duldulao, Richard, Jacob, Thomas, Gordon, Dan Lee, Matt “CONTROLLER INTERFACE
DEVICE (CID) II”. National Institute for Advanced Transportation Technology, University of
Idaho, 2001.

3. Lee, Suzanne E., Perez, Miguel A., Doerzaph, Zachary R., Stone, Scott R. , Neale, Vicki L.,
Brown , Sarah B., Knipling, Ronald R., G., Holbrook, Thomas , and Dingus , Thomas A.
“Task 5 Final Report Intersection Collision Avoidance—Violation Project: Final Project
Report ”, Virginia Tech Transportation Institute, Blacksburg, VA, 2007

4. Lombardo, Louis V., “Cooperative Intersection Collision Avoidance System (CICAS-V) to
Avoid Violations at Stop Signs & Signals” , SAE Government/Industry Meeting , Washington,
DC , 2006

5. McCabe, T.J., "A Complexity Measure," IEEE Transactions on Software Engineering, vol. 2,
no. 4, pp. 308-320, 1976

6. Maile, Michael, “Cooperative Systems for Intersection Crash Avoidance Presentation”, 2008

7. Zennaro, Marco, “Berkeley Adaptive Traffic Control System Protocol”,
http://www.zennaro.net/projects/transportation.php, 2008

8. “TRAFFIC CONTROL SYSTEMS HANDBOOK”, Federal Highway Administration Office of
Transportation Management, October 2005.

9. MIT Intelligent Transportation Systems program web site, http://mit.edu/its/mitsimlab.html

10. InSync, Next Generation Adaptive Traffic Signal System, Dr. Reggie Chandra, Rhythm
Engineering©. http://www.rhythmtraffic.com/

http://www.rhythmtraffic.com/
http://mit.edu/its/mitsimlab.html
http://www.zennaro.net/projects/transportation.php

	Ada95 Primary Software
	Table of Contents
	Introduction
	Evaluation of Existing Traffic Signal Control Programs
	Criteria
	SCoP Requirements
	Program 1 - California Partners for Advanced Transit and Highways (PATH)
	Base Evaluation Criteria
	Additional Criteria from SCoP requirements

	Program 2 - Advanced Technologies, Incorporated Dual Redundant Base Software
	Base Evaluation Criteria
	Additional Criteria from SCoP requirements

	Program 3 - The LA Traffic Control Signal Program
	Program 4 - The InSync Adaptive Traffic Signal Controller
	Program 5 – MIT Intelligent Transportation System Program (MITSIMLab)
	Program 6 – Software Controller Interface Device (CID) II:

	Summary of Research Findings (Pros and Cons)
	Recommendation
	Advantages of Approach

	Appendix A - CICAS-V Interfacing
	Appendix B - Texas Model Interfacing
	Appendix C - The ATI Dual Redundant TSCP Metrics and Dependencies
	C++ Redundant Software
	McCabe Metrics
	Dependency Graph (ATI PHASE I)

	Appendix D - PATH Software Metrics and Dependencies
	C++ (C) Software Metrics
	Dependency Graph (PATH)

	Appendix E - MITSIMLab TMS Software Metrics and Dependencies
	C++ (C) Software Metrics
	Procedural Metrics Summary

	Appendix F - Phase II Task 1 SOW Description
	References

